Introduction ============ Welcome to **Superman**! This library helps you use Manifold Learning algorithms in a functional, numpy-style manner. It is designed to be easy to use, well-documented, and fast. Features -------- - Clean, Pythonic API - Functional style - Abstracted dense/sparse operations Installation ------------ You can install the latest release from PyPI: .. code-block:: bash pip install superman Or install from source: .. code-block:: bash git clone https://github.com/ovmurad/superman cd superman pip install -e. Here’s a minimal example to get you started: .. code-block:: python from src.geometry import Points from src.data import load_swiss_roll #returns tuple of points and intrinsic parameter points_coords = load_swiss_roll(1000) points = points_coords[0] coords = points_coords[1] #get the pairwise distance matrix with cityblock metric dist = points.pairwise_distance(dist_type="cityblock") print(dist) Next Steps ---------- - :doc:`usage` — learn how to use MyProject in more detail - :doc:`modules` — explore the full API reference