src.array package¶
Subpackages¶
- src.array.dense package
- Submodules
- src.array.dense.dense module
DenseArray
DenseArray.as_array()
DenseArray.as_csr()
DenseArray.as_dense()
DenseArray.as_nparray()
DenseArray.as_type()
DenseArray.broadcast_to()
DenseArray.compress()
DenseArray.compress_axis()
DenseArray.concat()
DenseArray.copy()
DenseArray.cos()
DenseArray.count_nonzero()
DenseArray.diagonal()
DenseArray.distance()
DenseArray.distance_lazy()
DenseArray.exp()
DenseArray.expand_dims()
DenseArray.fill_diagonal()
DenseArray.full()
DenseArray.icos()
DenseArray.iexp()
DenseArray.ilog()
DenseArray.isin()
DenseArray.isqrt()
DenseArray.log()
DenseArray.max()
DenseArray.mean()
DenseArray.min()
DenseArray.ones()
DenseArray.reshape()
DenseArray.shape
DenseArray.sin()
DenseArray.sqrt()
DenseArray.squeeze()
DenseArray.stack()
DenseArray.sum()
DenseArray.zeros()
- Module contents
DenseArray
DenseArray.as_array()
DenseArray.as_csr()
DenseArray.as_dense()
DenseArray.as_nparray()
DenseArray.as_type()
DenseArray.broadcast_to()
DenseArray.compress()
DenseArray.compress_axis()
DenseArray.concat()
DenseArray.copy()
DenseArray.cos()
DenseArray.count_nonzero()
DenseArray.diagonal()
DenseArray.distance()
DenseArray.distance_lazy()
DenseArray.exp()
DenseArray.expand_dims()
DenseArray.fill_diagonal()
DenseArray.full()
DenseArray.icos()
DenseArray.iexp()
DenseArray.ilog()
DenseArray.isin()
DenseArray.isqrt()
DenseArray.log()
DenseArray.max()
DenseArray.mean()
DenseArray.min()
DenseArray.ones()
DenseArray.reshape()
DenseArray.shape
DenseArray.sin()
DenseArray.sqrt()
DenseArray.squeeze()
DenseArray.stack()
DenseArray.sum()
DenseArray.zeros()
- src.array.linalg package
- src.array.sparse package
- Submodules
- src.array.sparse.csr module
CsrArray
CsrArray.as_array()
CsrArray.as_csr()
CsrArray.as_nparray()
CsrArray.broadcast_to()
CsrArray.compress()
CsrArray.compress_axis()
CsrArray.concat()
CsrArray.count_nonzero()
CsrArray.diagonal()
CsrArray.expand_dims()
CsrArray.fill_diagonal()
CsrArray.get_dense_index()
CsrArray.indices
CsrArray.indptr
CsrArray.mask_as_csr_index()
CsrArray.max()
CsrArray.mean()
CsrArray.min()
CsrArray.ncols
CsrArray.nrows
CsrArray.reshape()
CsrArray.shape
CsrArray.squeeze()
CsrArray.stack()
CsrArray.sum()
- src.array.sparse.sparse module
SparseArray
SparseArray.as_dense()
SparseArray.as_type()
SparseArray.copy()
SparseArray.cos()
SparseArray.exp()
SparseArray.get_dense_index()
SparseArray.icos()
SparseArray.iexp()
SparseArray.ilog()
SparseArray.index
SparseArray.isin()
SparseArray.isqrt()
SparseArray.log()
SparseArray.shape
SparseArray.sin()
SparseArray.sparsity
SparseArray.sqrt()
- Module contents
CsrArray
CsrArray.as_array()
CsrArray.as_csr()
CsrArray.as_nparray()
CsrArray.broadcast_to()
CsrArray.compress()
CsrArray.compress_axis()
CsrArray.concat()
CsrArray.count_nonzero()
CsrArray.diagonal()
CsrArray.expand_dims()
CsrArray.fill_diagonal()
CsrArray.get_dense_index()
CsrArray.indices
CsrArray.indptr
CsrArray.mask_as_csr_index()
CsrArray.max()
CsrArray.mean()
CsrArray.min()
CsrArray.ncols
CsrArray.nrows
CsrArray.reshape()
CsrArray.shape
CsrArray.squeeze()
CsrArray.stack()
CsrArray.sum()
SparseArray
SparseArray.as_dense()
SparseArray.as_type()
SparseArray.copy()
SparseArray.cos()
SparseArray.exp()
SparseArray.get_dense_index()
SparseArray.icos()
SparseArray.iexp()
SparseArray.ilog()
SparseArray.index
SparseArray.isin()
SparseArray.isqrt()
SparseArray.log()
SparseArray.shape
SparseArray.sin()
SparseArray.sparsity
SparseArray.sqrt()
Submodules¶
src.array.base module¶
- class src.array.base.BaseArray(*args, **kwargs)¶
Bases:
Generic
[Data
],ABC
- Parameters:
args (Any)
kwargs (Any)
- abstractmethod classmethod as_array(*args, **kwargs)¶
- Parameters:
args (Any)
kwargs (Any)
- Return type:
Self
- abstractmethod as_csr(*args, **kwargs)¶
- abstractmethod as_dense(*args, **kwargs)¶
- Parameters:
args (Any)
kwargs (Any)
- Return type:
- abstractmethod as_nparray(*args, **kwargs)¶
- Parameters:
args (Any)
kwargs (Any)
- Return type:
ndarray[tuple[int, …], Data]
- abstractmethod as_type(*args, **kwargs)¶
- Parameters:
args (Any)
kwargs (Any)
- Return type:
Self
- abstractmethod broadcast_to(*, shape)¶
- Parameters:
shape (int | Sequence[int])
- Return type:
Self
- abstractmethod compress(*, keep, axis=0)¶
- Parameters:
keep (Any | Sequence[Any])
axis (int | Sequence[int] | None)
- Return type:
BaseArray[Data]
- abstractmethod compress_axis(*, keep, axis=0)¶
- Parameters:
keep (Any)
axis (int | None)
- Return type:
BaseArray[Data]
- abstractmethod classmethod concat(arrs, /, *, axis=0)¶
- Parameters:
arrs (Sequence[Self])
axis (int)
- Return type:
Self
- abstractmethod copy(*args, **kwargs)¶
- Parameters:
args (Any)
kwargs (Any)
- Return type:
Self
- abstractmethod cos(*args, **kwargs)¶
- Parameters:
args (Any)
kwargs (Any)
- Return type:
Self
- abstractmethod count_nonzero(*, axis=None, keepdims=False)¶
- Parameters:
axis (int | Sequence[int] | None)
keepdims (bool)
- Return type:
BaseArray[Data]
- property dtype: type¶
- abstractmethod exp(*args, **kwargs)¶
- Parameters:
args (Any)
kwargs (Any)
- Return type:
Self
- abstractmethod expand_dims(*, axis)¶
- Parameters:
axis (int | Sequence[int])
- Return type:
Self
- abstractmethod fill_diagonal(*args, **kwargs)¶
- Parameters:
args (Any)
kwargs (Any)
- Return type:
Self
- property format: Literal['dense', 'csr']¶
- abstractmethod icos()¶
- Return type:
Self
- abstractmethod iexp()¶
- Return type:
Self
- abstractmethod ilog()¶
- Return type:
Self
- property is_dense: bool¶
- property is_sparse: bool¶
- abstractmethod isin()¶
- Return type:
Self
- abstractmethod isqrt()¶
- Return type:
Self
- abstractmethod log(*args, **kwargs)¶
- Parameters:
args (Any)
kwargs (Any)
- Return type:
Self
- abstractmethod max(*, axis=None, keepdims=False)¶
- Parameters:
axis (int | Sequence[int] | None)
keepdims (bool)
- Return type:
BaseArray[Data]
- abstractmethod mean(*, axis=None, keepdims=False)¶
- Parameters:
axis (int | Sequence[int] | None)
keepdims (bool)
- Return type:
BaseArray[Data]
- abstractmethod min(*, axis=None, keepdims=False)¶
- Parameters:
axis (int | Sequence[int] | None)
keepdims (bool)
- Return type:
BaseArray[Data]
- property ndim: int¶
- property nnz: int¶
- abstractmethod reshape(*, shape)¶
- Parameters:
shape (int | Sequence[int])
- Return type:
Self
- abstract property shape: tuple[int, ...]¶
- abstractmethod sin(*args, **kwargs)¶
- Parameters:
args (Any)
kwargs (Any)
- Return type:
Self
- property size: int¶
- abstractmethod sqrt(*args, **kwargs)¶
- Parameters:
args (Any)
kwargs (Any)
- Return type:
Self
- abstractmethod squeeze(*, axis)¶
- Parameters:
axis (int | Sequence[int])
- Return type:
Self
- abstractmethod classmethod stack(arrs, /, *, axis=0)¶
- Parameters:
arrs (Sequence[Self])
axis (int)
- Return type:
Self
- src.array.base.unwrap(stg_like)¶
- Parameters:
stg_like (Any)
- Return type:
Any
- src.array.base.unwrap_args(args)¶
- Parameters:
args (tuple)
- Return type:
tuple
- src.array.base.unwrap_kwargs(kwargs)¶
- Parameters:
kwargs (dict)
- Return type:
dict[str, Any]
Module contents¶
- src.array.BACKEND¶
alias of
NumpyBackend
- class src.array.BaseArray(*args, **kwargs)¶
Bases:
Generic
[Data
],ABC
- Parameters:
args (Any)
kwargs (Any)
- abstractmethod classmethod as_array(*args, **kwargs)¶
- Parameters:
args (Any)
kwargs (Any)
- Return type:
Self
- abstractmethod as_csr(*args, **kwargs)¶
- abstractmethod as_dense(*args, **kwargs)¶
- Parameters:
args (Any)
kwargs (Any)
- Return type:
- abstractmethod as_nparray(*args, **kwargs)¶
- Parameters:
args (Any)
kwargs (Any)
- Return type:
ndarray[tuple[int, …], Data]
- abstractmethod as_type(*args, **kwargs)¶
- Parameters:
args (Any)
kwargs (Any)
- Return type:
Self
- abstractmethod broadcast_to(*, shape)¶
- Parameters:
shape (int | Sequence[int])
- Return type:
Self
- abstractmethod compress(*, keep, axis=0)¶
- Parameters:
keep (Any | Sequence[Any])
axis (int | Sequence[int] | None)
- Return type:
BaseArray[Data]
- abstractmethod compress_axis(*, keep, axis=0)¶
- Parameters:
keep (Any)
axis (int | None)
- Return type:
BaseArray[Data]
- abstractmethod classmethod concat(arrs, /, *, axis=0)¶
- Parameters:
arrs (Sequence[Self])
axis (int)
- Return type:
Self
- abstractmethod copy(*args, **kwargs)¶
- Parameters:
args (Any)
kwargs (Any)
- Return type:
Self
- abstractmethod cos(*args, **kwargs)¶
- Parameters:
args (Any)
kwargs (Any)
- Return type:
Self
- abstractmethod count_nonzero(*, axis=None, keepdims=False)¶
- Parameters:
axis (int | Sequence[int] | None)
keepdims (bool)
- Return type:
BaseArray[Data]
- property dtype: type¶
- abstractmethod exp(*args, **kwargs)¶
- Parameters:
args (Any)
kwargs (Any)
- Return type:
Self
- abstractmethod expand_dims(*, axis)¶
- Parameters:
axis (int | Sequence[int])
- Return type:
Self
- abstractmethod fill_diagonal(*args, **kwargs)¶
- Parameters:
args (Any)
kwargs (Any)
- Return type:
Self
- property format: Literal['dense', 'csr']¶
- abstractmethod icos()¶
- Return type:
Self
- abstractmethod iexp()¶
- Return type:
Self
- abstractmethod ilog()¶
- Return type:
Self
- property is_dense: bool¶
- property is_sparse: bool¶
- abstractmethod isin()¶
- Return type:
Self
- abstractmethod isqrt()¶
- Return type:
Self
- abstractmethod log(*args, **kwargs)¶
- Parameters:
args (Any)
kwargs (Any)
- Return type:
Self
- abstractmethod max(*, axis=None, keepdims=False)¶
- Parameters:
axis (int | Sequence[int] | None)
keepdims (bool)
- Return type:
BaseArray[Data]
- abstractmethod mean(*, axis=None, keepdims=False)¶
- Parameters:
axis (int | Sequence[int] | None)
keepdims (bool)
- Return type:
BaseArray[Data]
- abstractmethod min(*, axis=None, keepdims=False)¶
- Parameters:
axis (int | Sequence[int] | None)
keepdims (bool)
- Return type:
BaseArray[Data]
- property ndim: int¶
- property nnz: int¶
- abstractmethod reshape(*, shape)¶
- Parameters:
shape (int | Sequence[int])
- Return type:
Self
- abstract property shape: tuple[int, ...]¶
- abstractmethod sin(*args, **kwargs)¶
- Parameters:
args (Any)
kwargs (Any)
- Return type:
Self
- property size: int¶
- abstractmethod sqrt(*args, **kwargs)¶
- Parameters:
args (Any)
kwargs (Any)
- Return type:
Self
- abstractmethod squeeze(*, axis)¶
- Parameters:
axis (int | Sequence[int])
- Return type:
Self
- abstractmethod classmethod stack(arrs, /, *, axis=0)¶
- Parameters:
arrs (Sequence[Self])
axis (int)
- Return type:
Self
- class src.array.CsrArray(values_like, index_like, /, *, shape, dtype=None, copy_values=False, copy_index=False)¶
Bases:
Generic
[Data
],SparseArray
[Data
]- Parameters:
values_like (Any)
index_like (Sequence[Any])
shape (Sequence[int])
dtype (Optional[type])
copy_values (bool)
copy_index (bool)
- static as_array(values_like, index_like, /, *, shape=None, dtype=None, copy_values=False, copy_index=False)¶
- Parameters:
values_like (Any)
index_like (Sequence[Any])
shape (Sequence[int] | None)
dtype (type | None)
copy_values (bool)
copy_index (bool)
- Return type:
CsrArray[Data]
- as_csr(copy_values=True, copy_index=True)¶
- Parameters:
copy_values (bool)
copy_index (bool)
- Return type:
Self
- as_nparray()¶
- Return type:
ndarray
- static broadcast_to(*, shape)¶
- Parameters:
shape (int | Sequence[int])
- Return type:
NoReturn
- compress(*, keep, axis=0)¶
- Parameters:
keep (Any | Sequence[Any])
axis (int | Sequence[int] | None)
- Return type:
CsrArray[Data]
- compress_axis(*, keep, axis=0)¶
- Parameters:
keep (Any)
axis (int | None)
- Return type:
CsrArray[Data]
- static concat(arrs, /, *, axis=0)¶
- count_nonzero(*, axis=None, keepdims=False)¶
- Parameters:
axis (int | Sequence[int] | None)
keepdims (bool)
- Return type:
DenseArray[Data]
- static expand_dims(*, axis)¶
- Parameters:
axis (int | Sequence[int])
- Return type:
NoReturn
- static mask_as_csr_index(mask_like)¶
- max(*, axis=None, keepdims=False)¶
- Parameters:
axis (int | Sequence[int] | None)
keepdims (bool)
- Return type:
DenseArray[Data]
- mean(*, axis=None, keepdims=False)¶
- Parameters:
axis (int | Sequence[int] | None)
keepdims (bool)
- Return type:
DenseArray[Data]
- min(*, axis=None, keepdims=False)¶
- Parameters:
axis (int | Sequence[int] | None)
keepdims (bool)
- Return type:
DenseArray[Data]
- property ncols: int¶
- property nrows: int¶
- static reshape(*, shape)¶
- Parameters:
shape (int | Sequence[int])
- Return type:
NoReturn
- property shape: tuple[int, int]¶
- static squeeze(*, axis)¶
- Parameters:
axis (int | Sequence[int])
- Return type:
NoReturn
- static stack(arrs, /, *, axis=0)¶
- Parameters:
arrs (Sequence[CsrArray[Data]])
axis (int)
- Return type:
NoReturn
- sum(*, axis=None, keepdims=False)¶
- Parameters:
axis (int | Sequence[int] | None)
keepdims (bool)
- Return type:
DenseArray[Data]
- class src.array.DenseArray(arr_like, /, *, dtype=None, copy=False, **kwargs)¶
Bases:
Generic
[Data
],BaseArray
[Data
]- Parameters:
arr_like (Any)
dtype (Optional[type])
copy (bool)
kwargs (Any)
- static as_array(arr_like, /, *, dtype=None, copy=False)¶
- Parameters:
arr_like (Any)
dtype (type | None)
copy (bool)
- Return type:
DenseArray[Data]
- as_csr()¶
- Return type:
NoReturn
- as_dense(copy=False)¶
- Parameters:
copy (bool)
- Return type:
DenseArray[Data]
- as_nparray()¶
- Return type:
ndarray
- as_type(*, dtype, copy=False)¶
- Parameters:
dtype (type)
copy (bool)
- Return type:
DenseArray[Data]
- broadcast_to(*args, **kwargs)¶
- Parameters:
self (DenseArray[Data])
args (~_OpArgs)
kwargs (~_OpArgs)
- Return type:
DenseArray[Data]
- compress(*args, **kwargs)¶
- Parameters:
self (DenseArray[Data])
args (~_OpArgs)
kwargs (~_OpArgs)
- Return type:
DenseArray[Data]
- compress_axis(*args, **kwargs)¶
- Parameters:
self (DenseArray[Data])
args (~_OpArgs)
kwargs (~_OpArgs)
- Return type:
DenseArray[Data]
- static concat(arrs, /, *, axis=0)¶
- Parameters:
arrs (Sequence[DenseArray[Data]])
axis (int)
- Return type:
DenseArray[Data]
- copy(*args, **kwargs)¶
- Parameters:
self (DenseArray[Data])
args (~_OpArgs)
kwargs (~_OpArgs)
- Return type:
DenseArray[Data]
- cos(*args, **kwargs)¶
- Parameters:
self (DenseArray[Data])
args (~_OpArgs)
kwargs (~_OpArgs)
- Return type:
DenseArray[Data]
- count_nonzero(*args, **kwargs)¶
- Parameters:
self (DenseArray[Data])
args (~_OpArgs)
kwargs (~_OpArgs)
- Return type:
DenseArray[Data]
- diagonal(*args, **kwargs)¶
- Parameters:
self (DenseArray[Data])
args (~_OpArgs)
kwargs (~_OpArgs)
- Return type:
DenseArray[Data]
- distance(*args, **kwargs)¶
- Parameters:
self (DenseArray[Data])
args (~_OpArgs)
kwargs (~_OpArgs)
- Return type:
DenseArray[Data]
- distance_lazy(*args, **kwargs)¶
- Parameters:
self (DenseArray[Data])
args (~_OpArgs)
kwargs (~_OpArgs)
- Return type:
Iterator[DenseArray[Data]]
- exp(*args, **kwargs)¶
- Parameters:
self (DenseArray[Data])
args (~_OpArgs)
kwargs (~_OpArgs)
- Return type:
DenseArray[Data]
- expand_dims(*args, **kwargs)¶
- Parameters:
self (DenseArray[Data])
args (~_OpArgs)
kwargs (~_OpArgs)
- Return type:
DenseArray[Data]
- fill_diagonal(*args, **kwargs)¶
- Parameters:
self (DenseArray[Data])
args (~_OpArgs)
kwargs (~_OpArgs)
- Return type:
DenseArray[Data]
- static full(fill_value, /, *, shape, dtype=None)¶
- Parameters:
fill_value (Any)
shape (int | Sequence[int])
dtype (type | None)
- Return type:
DenseArray[Data]
- icos(*args, **kwargs)¶
- Parameters:
self (DenseArray[Data])
args (~_OpArgs)
kwargs (~_OpArgs)
- Return type:
DenseArray[Data]
- iexp(*args, **kwargs)¶
- Parameters:
self (DenseArray[Data])
args (~_OpArgs)
kwargs (~_OpArgs)
- Return type:
DenseArray[Data]
- ilog(*args, **kwargs)¶
- Parameters:
self (DenseArray[Data])
args (~_OpArgs)
kwargs (~_OpArgs)
- Return type:
DenseArray[Data]
- isin(*args, **kwargs)¶
- Parameters:
self (DenseArray[Data])
args (~_OpArgs)
kwargs (~_OpArgs)
- Return type:
DenseArray[Data]
- isqrt(*args, **kwargs)¶
- Parameters:
self (DenseArray[Data])
args (~_OpArgs)
kwargs (~_OpArgs)
- Return type:
DenseArray[Data]
- log(*args, **kwargs)¶
- Parameters:
self (DenseArray[Data])
args (~_OpArgs)
kwargs (~_OpArgs)
- Return type:
DenseArray[Data]
- max(*args, **kwargs)¶
- Parameters:
self (DenseArray[Data])
args (~_OpArgs)
kwargs (~_OpArgs)
- Return type:
DenseArray[Data]
- mean(*args, **kwargs)¶
- Parameters:
self (DenseArray[Data])
args (~_OpArgs)
kwargs (~_OpArgs)
- Return type:
DenseArray[Data]
- min(*args, **kwargs)¶
- Parameters:
self (DenseArray[Data])
args (~_OpArgs)
kwargs (~_OpArgs)
- Return type:
DenseArray[Data]
- static ones(*, shape, dtype=None)¶
- Parameters:
shape (int | Sequence[int])
dtype (type | None)
- Return type:
DenseArray[Data]
- reshape(*args, **kwargs)¶
- Parameters:
self (DenseArray[Data])
args (~_OpArgs)
kwargs (~_OpArgs)
- Return type:
DenseArray[Data]
- property shape: tuple[int, ...]¶
- sin(*args, **kwargs)¶
- Parameters:
self (DenseArray[Data])
args (~_OpArgs)
kwargs (~_OpArgs)
- Return type:
DenseArray[Data]
- sqrt(*args, **kwargs)¶
- Parameters:
self (DenseArray[Data])
args (~_OpArgs)
kwargs (~_OpArgs)
- Return type:
DenseArray[Data]
- squeeze(*args, **kwargs)¶
- Parameters:
self (DenseArray[Data])
args (~_OpArgs)
kwargs (~_OpArgs)
- Return type:
DenseArray[Data]
- static stack(arrs, /, *, axis=0)¶
- Parameters:
arrs (Sequence[DenseArray[Data]])
axis (int)
- Return type:
DenseArray[Data]
- sum(*args, **kwargs)¶
- Parameters:
self (DenseArray[Data])
args (~_OpArgs)
kwargs (~_OpArgs)
- Return type:
DenseArray[Data]
- static zeros(*, shape, dtype=None)¶
- Parameters:
shape (int | Sequence[int])
dtype (type | None)
- Return type:
DenseArray[Data]
- class src.array.SparseArray(values_like, index_like, /, *, shape, dtype=None, copy_values=False, copy_index=False, **kwargs)¶
Bases:
Generic
[Data
],BaseArray
[Data
]- Parameters:
values_like (Any)
index_like (Sequence[Any])
shape (Sequence[int])
dtype (Optional[type])
copy_values (bool)
copy_index (bool)
kwargs (Any)
- as_dense(fill_value)¶
- Parameters:
fill_value (Any)
- Return type:
DenseArray[Data]
- as_type(*, dtype, copy_values=False, copy_index=False)¶
- Parameters:
dtype (type)
copy_values (bool)
copy_index (bool)
- Return type:
Self
- copy(copy_values=True, copy_index=True)¶
- Parameters:
copy_values (bool)
copy_index (bool)
- Return type:
Self
- cos(copy_index=False)¶
- Parameters:
self (SparseArray[Data])
copy_index (bool)
- Return type:
SparseArray[Data]
- exp(copy_index=False)¶
- Parameters:
self (SparseArray[Data])
copy_index (bool)
- Return type:
SparseArray[Data]
- icos()¶
- Parameters:
self (SparseArray[Data])
- Return type:
SparseArray[Data]
- iexp()¶
- Parameters:
self (SparseArray[Data])
- Return type:
SparseArray[Data]
- ilog()¶
- Parameters:
self (SparseArray[Data])
- Return type:
SparseArray[Data]
- isin()¶
- Parameters:
self (SparseArray[Data])
- Return type:
SparseArray[Data]
- isqrt()¶
- Parameters:
self (SparseArray[Data])
- Return type:
SparseArray[Data]
- log(copy_index=False)¶
- Parameters:
self (SparseArray[Data])
copy_index (bool)
- Return type:
SparseArray[Data]
- property shape: tuple[int, ...]¶
- sin(copy_index=False)¶
- Parameters:
self (SparseArray[Data])
copy_index (bool)
- Return type:
SparseArray[Data]
- property sparsity: float¶
- sqrt(copy_index=False)¶
- Parameters:
self (SparseArray[Data])
copy_index (bool)
- Return type:
SparseArray[Data]
- class src.array.Storage(stg_like, /, *, dtype=None, copy=False)¶
Bases:
Generic
[Data
]- Parameters:
stg_like (Any)
dtype (Optional[type])
copy (bool)
- abs(*args, **kwargs)¶
- add_at(*args, **kwargs)¶
- add_between(*args, **kwargs)¶
- static arange(*, start, stop, step=None, dtype=None)¶
- Parameters:
start (int)
stop (int)
step (int | None)
dtype (type | None)
- Return type:
Storage[Data]
- static as_index(index_like, /, *, copy=False, assert_flat=True)¶
- Parameters:
index_like (Any)
copy (bool)
assert_flat (bool)
- Return type:
Storage[Data]
- static as_mask(mask_like, /, *, copy=False, assert_flat=False)¶
- Parameters:
mask_like (Any)
copy (bool)
assert_flat (bool)
- Return type:
Storage[Data]
- static as_storage(stg_like, /, *, dtype=None, copy=False)¶
- Parameters:
stg_like (Any)
dtype (type | None)
copy (bool)
- Return type:
Storage[Data]
- as_type(*args, **kwargs)¶
- static as_values(values_like, /, *, dtype=None, copy=False, assert_flat=False)¶
- Parameters:
values_like (Any)
dtype (type | None)
copy (bool)
assert_flat (bool)
- Return type:
Storage[Data]
- bin_count(*args, **kwargs)¶
- broadcast_to(*args, **kwargs)¶
- compress(*, keep, axis=0)¶
- Parameters:
keep (Any | Sequence[Any])
axis (int | Sequence[int] | None)
- Return type:
Storage[Data]
- compress_axis(*args, **kwargs)¶
- static concat(stgs, /, *, axis=0)¶
- copy(*args, **kwargs)¶
- cos(*args, **kwargs)¶
- count_nonzero(*args, **kwargs)¶
- cumsum(*args, **kwargs)¶
- property data: Data¶
- diagonal(*args, **kwargs)¶
- diff(*args, **kwargs)¶
- distance(*args, **kwargs)¶
- distance_lazy(*args, **kwargs)¶
- property dtype: type¶
- exp(*args, **kwargs)¶
- expand_dims(*args, **kwargs)¶
- fill_diagonal(*args, **kwargs)¶
- flat_nonzero(*args, **kwargs)¶
- static full(fill_value, /, *, shape, dtype=None)¶
- Parameters:
fill_value (Any)
shape (int | Sequence[int])
dtype (type | None)
- Return type:
Storage[Data]
- iabs(*args, **kwargs)¶
- icos(*args, **kwargs)¶
- iexp(*args, **kwargs)¶
- ilog(*args, **kwargs)¶
- isin(*args, **kwargs)¶
- isqrt(*args, **kwargs)¶
- log(*args, **kwargs)¶
- max(*args, **kwargs)¶
- mean(*args, **kwargs)¶
- min(*args, **kwargs)¶
- property ndim: int¶
- static ones(*, shape, dtype=None)¶
- Parameters:
shape (int | Sequence[int])
dtype (type | None)
- Return type:
Storage[Data]
- repeat(*args, **kwargs)¶
- reshape(*args, **kwargs)¶
- segment_max(*args, **kwargs)¶
- segment_mean(*args, **kwargs)¶
- segment_min(*args, **kwargs)¶
- segment_sum(*args, **kwargs)¶
- property shape: tuple[int, ...]¶
- sin(*args, **kwargs)¶
- property size: int¶
- sqrt(*args, **kwargs)¶
- squeeze(*args, **kwargs)¶
- static stack(stgs, /, *, axis=0)¶
- sum(*args, **kwargs)¶