src.geometry package¶
Subpackages¶
Submodules¶
src.geometry.normalize module¶
- src.geometry.normalize.normalize(arr, axis=1, degree_exp=1.0, sym_norm=False, in_place=False)¶
- Parameters:
arr (T)
axis (int | None)
degree_exp (float)
sym_norm (bool)
in_place (bool)
- Return type:
T
src.geometry.points module¶
- class src.geometry.points.Coordinates(*args, **kwargs)¶
Bases:
PointsMixin,DenseArray- Parameters:
args (Any)
kwargs (Any)
- classmethod concat_with_metadata(arrs, axis=0)¶
Concatenates a Sequence of this class, retaining the metadata of the first in the sequence. Returns an instance of this class with data concatentated.
- Parameters:
arrs (Sequence[Self]) – Sequence of instances to concatenate.
axis (int) – Axis to concatentate on. Axis must exist for each instance in arrs.
- Returns:
An instance of this class with data concatentated.
- Return type:
Self
- property d: int¶
- class src.geometry.points.Data(*args, **kwargs)¶
Bases:
Points- Parameters:
args (Any)
kwargs (Any)
- property D: int¶
- class src.geometry.points.Embedding(*args, **kwargs)¶
Bases:
Points- Parameters:
args (Any)
kwargs (Any)
- property p: int¶
- class src.geometry.points.Points(*args, **kwargs)¶
Bases:
PointsMixin,DenseArray- Parameters:
args (Any)
kwargs (Any)
- classmethod concat_with_metadata(arrs, axis=0)¶
Concatenates a Sequence of this class, retaining the metadata of the first in the sequence. Returns an instance of this class with data concatentated.
- Parameters:
arrs (Sequence[Self]) – Sequence of instances to concatenate.
axis (int) – Axis to concatentate on. Axis must exist for each instance in arrs.
- Returns:
An instance of this class with data concatentated.
- Return type:
Self
- demean(mean_pt=None, weights=None, needs_norm=True, in_place_demean=False, in_place_norm=False)¶
- Parameters:
mean_pt (DenseArray | int | bool | None)
weights (BaseArray | None)
needs_norm (bool)
in_place_demean (bool)
in_place_norm (bool)
- Return type:
Tuple[Points, DenseArray | None, BaseArray | None]
- pairwise_distance(y_pts=None, dist_type='euclidean')¶
Compute the pairwise distance matrix between points.
If y_pts is provided, computes distances between self and y_pts. Otherwise, computes distances among points in self.
- Parameters:
y_pts (Optional[Points]) – Another Points object to compute distances to. If None, distances are computed within self.
dist_type (DistanceType) – The type of distance metric to use (“euclidean”, “cityblock”, “sqeuclidian”). Name of metric is stored in metadata. (default: “euclidian”)
- Returns:
A DistanceMatrix containing pairwise distances. The matrix name is constructed from the metadata of the points involved.
- Return type:
- class src.geometry.points.PointsMixin(*args, **kwargs)¶
Bases:
ObjectMixin,BaseArray,ABCMixin class for point cloud objects.
Adds fixed dimensionality and dtype constraints, metadata handling, and distance computation functionality to point cloud classes.
- Parameters:
args (Any)
kwargs (Any)
- fixed_dtype¶
alias of
float64
- fixed_ndim: int = 2¶
- property nfeats: int¶
Number of features (dimensions) per point.
- Returns:
Number of features per point.
- Return type:
int
- property npts: int¶
Number of points in the point set.
- Returns:
Number of points.
- Return type:
int
Module contents¶
- class src.geometry.Coordinates(*args, **kwargs)¶
Bases:
PointsMixin,DenseArray- Parameters:
args (Any)
kwargs (Any)
- classmethod concat_with_metadata(arrs, axis=0)¶
Concatenates a Sequence of this class, retaining the metadata of the first in the sequence. Returns an instance of this class with data concatentated.
- Parameters:
arrs (Sequence[Self]) – Sequence of instances to concatenate.
axis (int) – Axis to concatentate on. Axis must exist for each instance in arrs.
- Returns:
An instance of this class with data concatentated.
- Return type:
Self
- property d: int¶
- class src.geometry.Data(*args, **kwargs)¶
Bases:
Points- Parameters:
args (Any)
kwargs (Any)
- property D: int¶
- class src.geometry.EigenSystem(iterable, **kwargs)¶
Bases:
EigenThis class represents a pair of eigenvalues and eigenvectors aka an eigensystem. EigenSystem behaves as a Tuple with extra methods. An eigenvalue’s corresponding eigenvector is stored at the same index.
- Parameters:
iterable (Iterable[Any])
kwargs (Any)
- Return type:
- drop_first()¶
Drops the first eigenvalue and eigenvector of the system.
- Returns:
An EigenSystem with the first eigenvalue and eigenvector dropped.
- Return type:
- get_comp(ncomp)¶
Gets the first ncomp number of eigenvalues and eigenvectors.
- Parameters:
ncomp (int) – The number of eigenvalues and eigenvectors to return.
- Returns:
An EigenSystem with the ncomp number of eigenvalues and eigenvectors.
- Return type:
- class src.geometry.Embedding(*args, **kwargs)¶
Bases:
Points- Parameters:
args (Any)
kwargs (Any)
- property p: int¶
- class src.geometry.Points(*args, **kwargs)¶
Bases:
PointsMixin,DenseArray- Parameters:
args (Any)
kwargs (Any)
- classmethod concat_with_metadata(arrs, axis=0)¶
Concatenates a Sequence of this class, retaining the metadata of the first in the sequence. Returns an instance of this class with data concatentated.
- Parameters:
arrs (Sequence[Self]) – Sequence of instances to concatenate.
axis (int) – Axis to concatentate on. Axis must exist for each instance in arrs.
- Returns:
An instance of this class with data concatentated.
- Return type:
Self
- demean(mean_pt=None, weights=None, needs_norm=True, in_place_demean=False, in_place_norm=False)¶
- Parameters:
mean_pt (DenseArray | int | bool | None)
weights (BaseArray | None)
needs_norm (bool)
in_place_demean (bool)
in_place_norm (bool)
- Return type:
Tuple[Points, DenseArray | None, BaseArray | None]
- pairwise_distance(y_pts=None, dist_type='euclidean')¶
Compute the pairwise distance matrix between points.
If y_pts is provided, computes distances between self and y_pts. Otherwise, computes distances among points in self.
- Parameters:
y_pts (Optional[Points]) – Another Points object to compute distances to. If None, distances are computed within self.
dist_type (DistanceType) – The type of distance metric to use (“euclidean”, “cityblock”, “sqeuclidian”). Name of metric is stored in metadata. (default: “euclidian”)
- Returns:
A DistanceMatrix containing pairwise distances. The matrix name is constructed from the metadata of the points involved.
- Return type:
- src.geometry.normalize(arr, axis=1, degree_exp=1.0, sym_norm=False, in_place=False)¶
- Parameters:
arr (T)
axis (int | None)
degree_exp (float)
sym_norm (bool)
in_place (bool)
- Return type:
T